On the Generalized Bykovskiĭ Presentation of Steinberg Modules

نویسندگان

چکیده

We study presentations of the virtual dualizing modules special linear groups number rings, Steinberg modules. Bykovskii gave a presentation for integers, and our main result is generalization this to Gaussian integers Eisenstein integers. also show that does not give several Euclidean rings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on direct sums of baer modules

the notion of baer modules was defined recently

effect of oral presentation on development of l2 learners grammar

this experimental study has been conducted to test the effect of oral presentation on the development of l2 learners grammar. but this oral presentation is not merely a deductive instruction of grammatical points, in this presentation two hypotheses of krashen (input and low filter hypotheses), stevicks viewpoints on grammar explanation and correction and widdowsons opinion on limited use of l1...

15 صفحه اول

Steinberg Modules and Donkin Pairs

We prove that in characteristic p > 0 a module with good filtration for a group of type E6 restricts to a module with good filtration for a group of type F4. Thus we confirm a conjecture of Brundan for one more case. Our method relies on the canonical Frobenius splittings of Mathieu. Next we settle the remaining cases, in characteristic not 2, with a computer-aided variation on the old method o...

متن کامل

On Extensions of generalized Steinberg Representations

Let F be a local non-archimedean field and let G be the group of F valued points of a connected reductive algebraic group over F. In this paper we compute the Ext-groups of generalized Steinberg representations in the category of smooth G-representations with coefficients in a certain self-injective ring. AMS 2000 Mathematics subject classification: Primary 22E50. Secondary 11F70.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnab028